Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Acta Pharmaceutica Sinica B ; (6): 637-650, 2022.
Article in English | WPRIM | ID: wpr-929316

ABSTRACT

Receptor activity-modulating proteins (RAMPs) are accessory molecules that form complexes with specific G protein-coupled receptors (GPCRs) and modulate their functions. It is established that RAMP interacts with the glucagon receptor family of GPCRs but the underlying mechanism is poorly understood. In this study, we used a bioluminescence resonance energy transfer (BRET) approach to comprehensively investigate such interactions. In conjunction with cAMP accumulation, Gα q activation and β-arrestin1/2 recruitment assays, we not only verified the GPCR-RAMP pairs previously reported, but also identified new patterns of GPCR-RAMP interaction. While RAMP1 was able to modify the three signaling events elicited by both glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R), and RAMP2 mainly affected β-arrestin1/2 recruitment by GCGR, GLP-1R and glucagon-like peptide-2 receptor, RAMP3 showed a widespread negative impact on all the family members except for growth hormone-releasing hormone receptor covering the three pathways. Our results suggest that RAMP modulates both G protein dependent and independent signal transduction among the glucagon receptor family members in a receptor-specific manner. Mapping such interactions provides new insights into the role of RAMP in ligand recognition and receptor activation.

2.
Chinese Journal of Pharmacology and Toxicology ; (6): 981-982, 2017.
Article in Chinese | WPRIM | ID: wpr-666562

ABSTRACT

OBJECTIVE To identify the mechanisms by which the formyl peptide receptor 2 (FPR2) mediates both inflammatory and anti-inflammatory signaling in an agonist-dependent manner. METHODS Cells expressing FPR2 were incubated with weak agonists, Aβ42 and Ac2-26, before stimulation with a strong agonist, WKYMVm. Calcium mobilization, cAMP inhibition and MAP kinase activation were measured. Intramolecular FRET were determined using FPR2 constructs with an ECFP attached to the C- terminus and a FlAsH binding motif embedded in the first or third intracellular loop (IL1 or IL3, respectively). RESULTS Aβ42 did not induce significant Ca2 + mobilization, but positively modulated WKYMVm-induced Ca2 + mobilization and cAMP reduction in a dose-variable manner within a narrow range of ligand concentrations. Treating FPR2-expressing cells with Ac2-26, a peptide with anti-inflam?matory activity, negatively modulated WKYMVm-induced Ca2 + mobilization and cAMP reduction. Intra?molecular FRET assay showed that stimulation of the receptor constructs with Aβ42 brought the C-terminal domain closer to IL1 but away from IL3. An opposite conformational change was induced by Ac2-26. The FPR2 conformation induced by Aβ42 corresponded to enhanced ERK phosphorylation and attenuated p38 MAPK phosphorylation, whereas Ac2-26 induced FPR2 conformational change corresponding to elevated p38 MAPK phosphorylation and reduced ERK phosphorylation. CONCLUSION Aβ42 and Ac2-26 induce different conformational changes in FPR2. These findings provide a structural basis for FPR2 mediation of inflammatory vs anti-inflammatory functions and identify a type of receptor modulation that differs from the classic positive and negative allosteric modulation.

3.
Chinese Journal of Pharmacology and Toxicology ; (6): 1020-1021, 2017.
Article in Chinese | WPRIM | ID: wpr-666492

ABSTRACT

OBJECTIVE The chemokine-like receptor 1 (CMKLR1, ChemR23) is a functional receptor for chemerin, the chemerin-derived nonapeptide (C9), and the amyloid β peptide 1-42 (Aβ42). Because these peptides share little sequence homology, studies were conducted to investigate their pharmaco?logical properties and regulation at CMKLR1. METHODS Cells expressing CMKLR1 were incubated with Aβ42 before stimulation with a strong agonist, the C9 peptide. Calcium mobilization, cAMP inhibition and MAP kinase activation were measured. Intramolecular FRET were determined using CMKLR1 constructs with an ECFP attached to the C- terminus and a FlAsH binding motif embedded in the first intracellular loop (IL1). RESULTS Binding of both Aβ42 and the C9 peptide induced CMKLR1 internal?ization, but only the Aβ42-induced receptor internalization involved clathrin-coated pits. Likewise, Aβ42 but not C9 stimulated β-arrestin 2 translocation to plasma membranes. A robust Ca2+ flux was observed following C9 stimulation, whereas Aβ42 was ineffective even at micromolar concentrations. Despite its low potency in calcium mobilization assay, Aβ42 was able to alter C9 -induced Ca2+ flux in dose-dependent manner: a potentiation effect at 100 pmol·L-1 of Aβ42 was followed by a suppression at 10 nmol·L-1 and further potentiation at 1 μmol·L-1. This unusual and biphasic modulatory effect was also seen in the C9-induced ERK phosphorylation but the dose curve was opposite to that of Ca2+ flux and cAMP inhibition, suggesting a reciprocal regulatory mechanism. Intramolecular FRET assay confirmed that Aβ42 modulates CMKLR1 rather than its downstream signaling pathways. CONCLUSION These findings suggest Aβ42 as an allosteric modulator that can both positively and negatively regulate the activation state of CMKLR1 in a manner that differs from existing allosteric modulatory mechanisms.

4.
Chinese Pharmacological Bulletin ; (12)2003.
Article in Chinese | WPRIM | ID: wpr-564549

ABSTRACT

G protein-coupled receptors(GPCRs)mediate cell signaling transduction of most hormones and neurological transmitters and behave as the key targets for drug research and development.Recently,the evidence of allosteric modulation of GPCRs has been revealed.Allosteric modulators have the ability to selectively tune responses only in tissues in which the endogenous agonist exerts its physiological effects,and have the potential for greater receptor subtype selectivity.The GPCRs allosteric modulators have been found and some of them have been in clinical use.Under the strategy of allosterism on structure activity relationship and target directed screening,more and more GPCRs allosteric modulators will be developed in the future.

SELECTION OF CITATIONS
SEARCH DETAIL